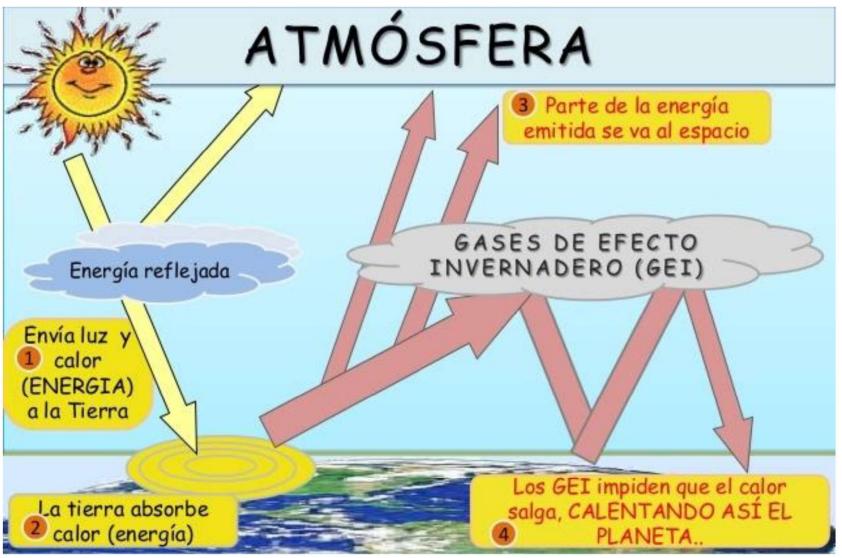


Tres estrategias nutricionales para disminuir las emisiones de metano

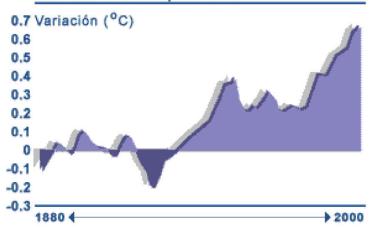
INSTITUTO DE INVESTIGACIONES AGROPECUARIAS, INIA Remehue CAMILA MUÑOZ Osorno, 22 agosto de 2019

ESQUEMA PRESENTACIÓN


- Cambio climático y gases de efecto invernadero
- Producción de CH₄ en rumiantes
- Estrategias de mitigación de metano:
 - 1. Suplementación con concentrado
 - 2. Calidad de la pradera
 - 3. Suplementación con aceite
- Consideraciones finales

CAMBIO CLIMÁTICO Y GASES DE EFECTO INVERNADERO

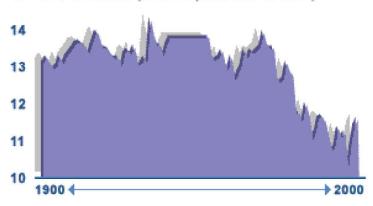
¿QUÉ ES EL EFECTO INVERNADERO?



Fuente: Marjorie Jennifer, 2013

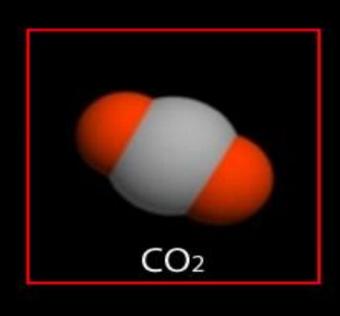
¿CUÁLES SON LOS EFECTOS DEL CAMBIO CLIMÁTICO?

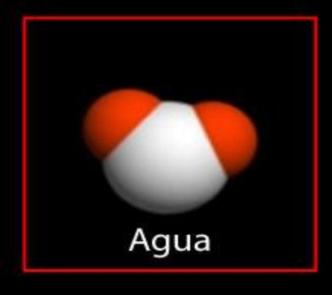
Aumento de temperatura



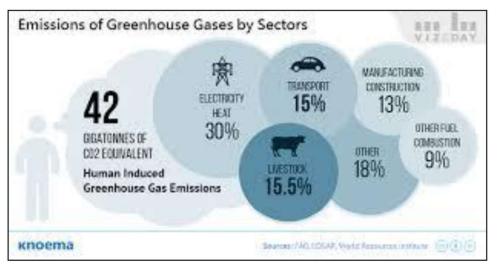
Nivel de las aguas

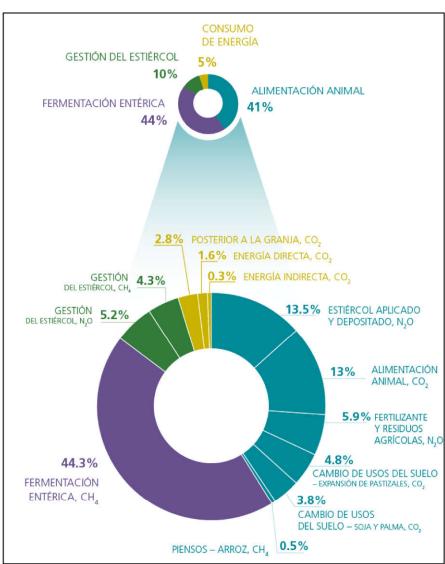
Hielos polares


CO₂ por uso de combustibles fósiles

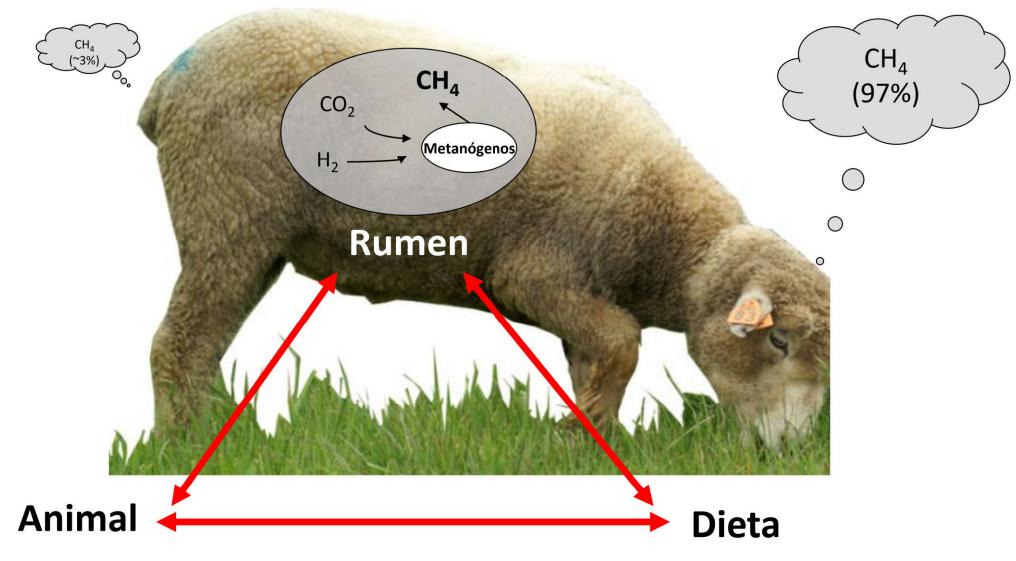

Fuente: Centro Hadley, Oficina Meteorológica

Gases de Invernadero





GEI Y SECTOR GANADERO


Contribución de las principales fuentes de emisiones de GEI de las cadenas de producción ganadera.

PRODUCCIÓN DE METANO EN RUMIANTES

METANO (CH₄) ES UN PRODUCTO DE LA FERMENTACIÓN RUMINAL

Fuente: Pinares-Patiño et al., 2011

FACTORES QUE AFECTAN LA PRODUCCIÓN DE METANO

FACTORES DE LA DIETA

- Consumo de materia seca
- Digestibilidad
- Composición química
 - Carbohidratos soluble
 - Fibra
 - Grasa
 - Proteína

FACTORES DEL ANIMAL

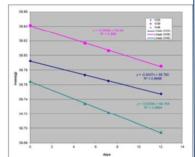
- Consumo de materia seca
- Peso vivo
- Microbioma ruminal

PROBLEMA PRODUCTIVO

- La producción de CH₄ representa una ineficiencia energética
- 2 a 12% de la energía bruta ingerida se pierde como gas metano

Técnica de Gas Hexafluoruro de Azufre (SF₆)

COMO SE MIDEN LAS EMISIONES DE METANO

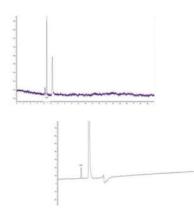

Técnica Hexafluoruro de Azufre (SF₆)

Tubos de permeación SF₆

- TP con gas SF₆ inserto en el rumen
- TP libera gas SF₆ a tasa <u>constante</u> conocida

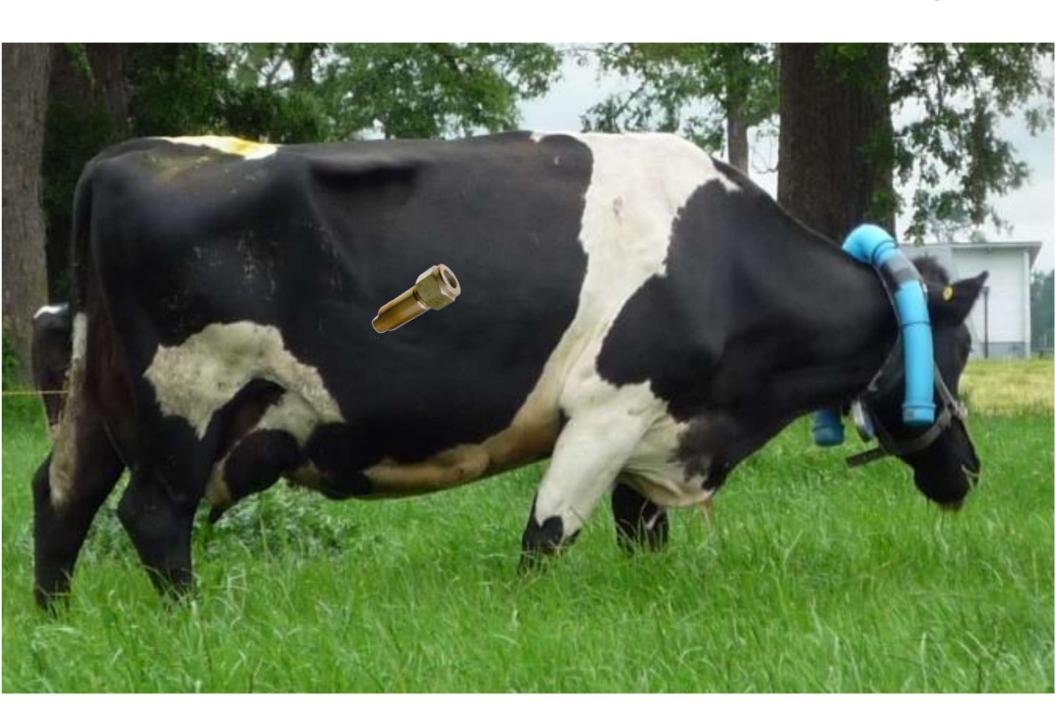
Muestreo de aire

- Gases exhalados y eructados se recogen en collares al vacío por periodo de 24 h
- Muestreo de gases SF₆ y CH₄ ambientales



Análisis por cromatografía de gases

En el laboratorio, determinación de concentraciones de gas SF₆ y CH₄ collar



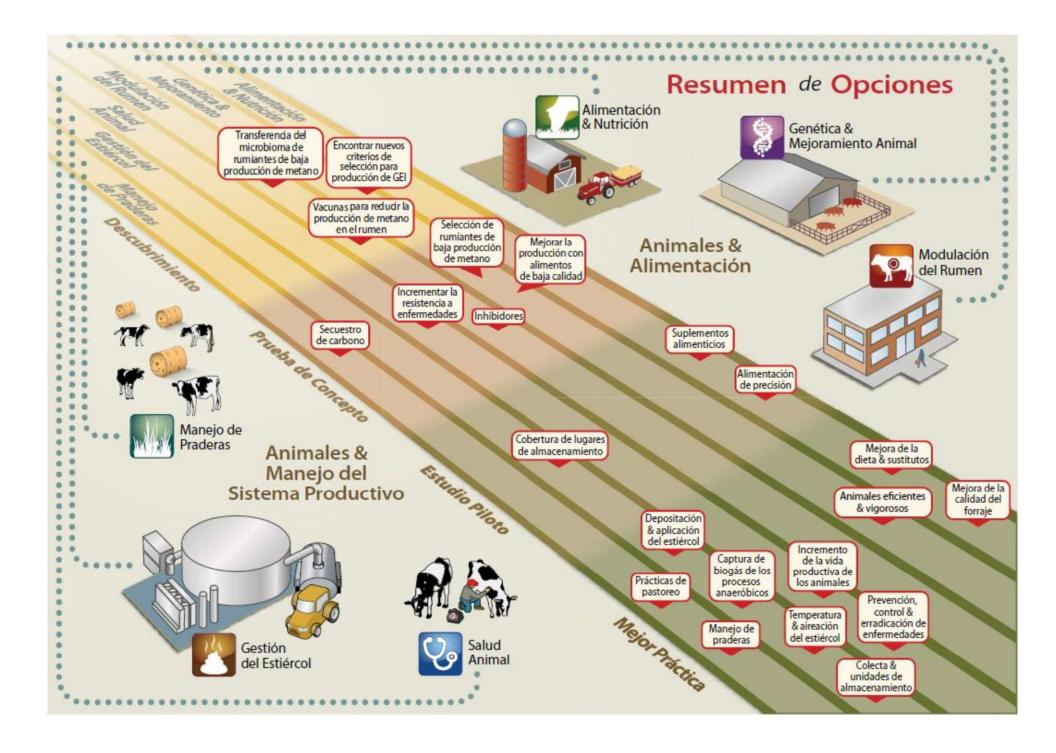
Calculo emisiones de metano

$$CH_4(g/d) = \frac{[CH_4 collar - CH_4 ambiente]}{[SF_6 collar - SF_6 ambiente]} * SF_6 TP$$

TÉCNICA DE GAS HEXAFLUORURO DE AZUFRE (SF₆)

LA EXPERIENCIA DE INIA MIDIENDO EMISIONES DE CH₄ DE VACAS LECHERAS

AÑO EXPERIMENTO	ESTRATEGIA MITIGACION EVALUADA
2011	Implementación técnica SF ₆
2012	Suplementación con concentrado en pastoreo
2013	Mejoramiento del manejo de pastoreo
2014	Suplementación con concentrado en lactancia tardía
2015	Suplementación con semillas oleaginosas
2016 - 2017	Suplementación con semillas oleaginosas a pastoreo y por largo tiempo
2018	Inhibidor de metanogénesis y dos fuentes de nitrógeno



ESTRATEGIAS PARA DISMINUIR LAS EMISIONES DE METANO DE SISTEMAS PASTORILES

Estrategia N° 1

SUPLEMENTACIÓN CON CONCENTRADO

SUPLEMENTACIÓN CON CONCENTRADO EN VACAS EN LACTANCIA TEMPRANA

- Mayor nivel de concentrado disminuye la intensidad de emisiones de metano
 - Cambio en el perfil de AGV en rumen, favoreciendo la producción de propionato sobre acetato
 - Aumentos de pH ruminal inhiben a metanógenos y protozoos
 - Dilución de los requerimiento de mantención por incremento en la producción de leche
- Métodos:
 - 24 vacas Holstein Friesian a pastoreo
 - 2 tratamientos :
 - 1 kg/d de concentrado

5 kg/d de concentrado

RESULTADOS SUPLEMENTACIÓN CON CONCENTRADO

	Conce	ntrado		
	1 kg	5 kg	SE	P =
Consumo de materia seca, kg/d	18.6	19.1	0.23	0.16
Leche, kg/d	25.4	27.8	0.91	0.01
Metano, g/d	374	423	13.5	0.02
Metano, g/kg de leche	15.0	15.4	0.53	0.73

Fuente: Muñoz et al. 2013 Livest. Sci. 175: 37-46

SUPLEMENTACIÓN CON CONCENTRADO SOBRE LAS EMISIONES DE CH₄ DE VACAS EN LACTANCIA TARDIA

<u>Tratamientos y Dieta</u>

- Tratamientos:
 - 4 kg concentrado/día
 - 8 kg concentrado/día
- Dieta diaria:
 - 2 kg MS pradera
 - 8 kg heno de pradera (TCO)
 - Tratamiento asignado

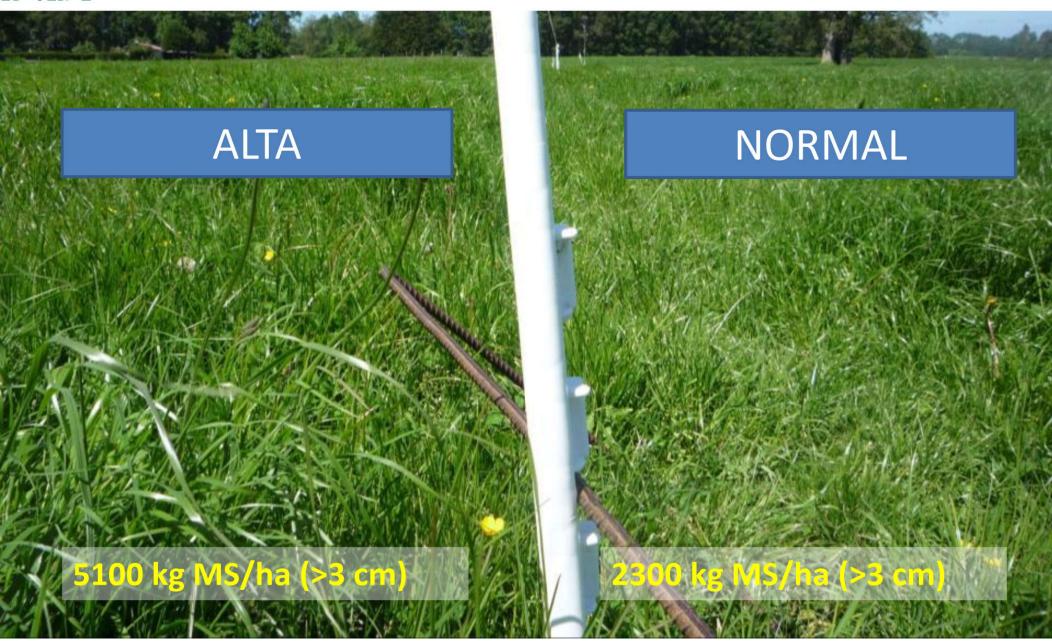
Resultados Suplementación con Concentrado en Lactancia Tardía

	Concentrado			
	4 kg	8 kg	ES	P =
Consumo de materia seca, kg/d	12.3	15.6	:	
Leche, kg/d	9.6	11.1	0.97	0.29
Metano _, g/d	290	321	9.08	0.03
Metano g/kg leche	35.8	33.7	5.66	0.80

Fuente: Muñoz et al. 2018. Chil. J. Ag. Res. 78: 429-437

CONCLUSIÓN CONCENTRADOS

- Desde el punto de vista de las emisiones de CH₄, la suplementación con concentrado se recomienda solo si existe una respuesta en producción de leche y si los otros componentes de la dieta tienen baja digestibilidad.
- Consideraciones
 - Efecto de sustitución
 - Menor digestión fibra (<pH)
 - Mitigación evidente con niveles de concentrado >40% MS dieta
 - Costos
 - Impacto ambiental global



Estrategia N° 2

MEJORAMIENTO DEL MANEJO DE PASTOREO

EFECTO DE LA BIOMASA FORRAJERA PRE-PASTOREO SOBRE LAS EMISIONES DE CH₄

BIOMASA PRE-PASTOREO Y EMISIONES DE METANO

	Biomasa			
	Normal	Alta	ES	P =
Consumo de materia seca, kg/d	15.5	13.9	0.36	< 0.001
Producción leche, kg/d	24.4	21.6	0.61	< 0.001
Metano, g/d	323	321	10.0	0.85
Metano, g/kg leche	13.6	15.3	0.64	0.01

CONCLUSIÓN MANEJO PASTOREO

- El mejoramiento del manejo de pastoreo sería una estrategia de interés en la reducción de emisiones de CH₄
- Contribuye a acortar las brechas de eficiencia tanto productivas como ambientales

Estrategia N° 3

SUPLEMENTACIÓN CON ACEITES

SUPLEMENTACIÓN CON SEMILLAS OLEAGINOSAS

HIPOTESIS

Los aceites de las semillas oleaginosas:

- Reducir emisiones metano
- Mejorar perfil ácidos grasos en leche
- Mantener nivel producción leche

Tratamientos:

Raps Algodón

Linaza

Control

SUPLEMENTACIÓN CON SEMILLAS OLEAGINOSAS

	Grasa inerte	Raps	Algodón	Linaza	P =
Consumo de materia seca, kg/d	18.0 ^b	20.2 ^a	17.8 ^b	17.9 ^b	0.02
Leche, kg/d	19.3	20.4	18.8	19.5	0.49
Metano, g/d	396 ^{bc}	465ª	361 ^c	427 ^{ab}	<0.001
N orina/N ingerido (g/g)	0.33 ^{ab}	0.28 ^c	0.37ª	0.32 ^{bc}	<0.001
Metano, g/kg leche	20.8	23.1	19.5	22.3	0.11

Fuente: Muñoz C., et al. 2019. Anim. Feed Sci. Tech. 249: 18-30

- No hubo diferencias entre tratamientos en la producción de leche
- La suplementación con semillas de algodón:
 - disminuyó las emisiones de metano entérico
 - aumentó la excreción de nitrógeno en la orina

CONCLUSION ACEITES

- La semilla de algodón fue mas efectiva en mitigar metano, sin embargo incremento excreción N
- Es necesario evaluar los resultados de las estrategias de mitigación de metano en relación a todos los aspectos ambientales, productivos, y de calidad de los productos
- Actualmente se continúa trabajando sobre:
 - Efectos a largo plazo de la suplementación con semillas de oleaginosas en sistemas pastoriles

DIRECCIONES FUTURAS DE LA INVESTIGACIÓN

- Otras estrategias nutricionales de mitigación de CH₄ para condiciones de pastoreo:
 - Suplementación con leguminosas
 - Combinación de estrategias nutricionales de mitigación de metano
 - Suplementación con algas
- Contribuir a una evaluación ambiental holística en los sistemas ganaderos (LCA)

Mitigación de 30% de la producción de metano

Cargar 127.000 celulares

Sacer de circulación 1 auto tamaño familiar

Plantar un bosque de 43 millones de arboles

Fuente: DSM

ESTUDIANTES Y EQUIPO DE TRABAJO

CONSIDERACIONES FINALES

- Estrategias nutricionales para disminuir metano están en etapa de investigación
- Las efectivas han disminuido la producción de metano en ~15%
- Respuestas deben medirse evaluando:
 - Impacto ambiental global
 - Productividad y eficiencia animal
 - Costo/beneficio
- Cualquiera alternativa de mitigación requiere Análisis del Ciclo de Vida (LCA) de productos para tener en cuenta los efectos completos

GRACIAS

Instituto de Investigaciones Agropecuarias INIA Remehue

camila.munoz@inia.cl

Gobierno de Chile