

Coberturas y sus efectos sobre parámetros de calidad y condición en postcosecha de

arándanos

Bruno Defilippi, Ing. Agr. PhD. INIA

¿Qué nos exigen nuestros mercados?

- Buena apariencia y tamaño
- Textura o firmeza adecuada
- Ausencia de pudriciones y signos de hongo
- Buen Sabor

Calidad y consistencia!!!!

Adaptación (clima, suelo, agua)

Rendimiento

Fecha de cosecha (temprana, media, tardía)

Resistencia plagas

Facilidad de manejo o cosecha

Licenciamiento

Calidad a consumidor

Calidad en postcosecha

Calidad de fruta a cosecha

¿Cómo podemos entregar un producto consistente y de calidad homogénea?

- $1 \succ \text{conociendo las variedades cultivadas}$
 - Fortalezas y limitaciones
 - 7 > TENIENDO UNA 'PRE COSECHA' ADECUADA
 - Desde manejos (poda-carga frutal; nutrición, riego, enfermedades), hasta índices de cosecha y frecuencia de cosecha.
 - 3 > MANEJANDO CONCEPTOS BÁSICOS DE POSTCOSECHA DE FRUTA
 - Fisiología y Daños en Postcosecha
 - 4 > DESARROLLANDO TECNOLOGÍAS ADECUADAS A LAS CONDICIONES LOCALES
 - Tecnologías: Frío como Base, AM, AC, SO2
 - Requerimientos del mercado
 - Limitaciones y riesgos

USO DE COBERTURAS EN PARÁMETROS DE POSTCOSECHA

¿PARA QUÉ USAMOS LAS COBERTURAS?

LAS COBERTURAS TIENEN DISTINTOS OBJETIVOS DEPENDIENDO DE LA REALIDAD Y NECESIDADES DE CADA HUERTO, SIN EMBARGO TODOS ESTOS USOS VAN EN LA MISMA DIRECCIÓN: <u>ASEGURAR CALIDAD DE NUESTRO PRODUCTO</u>.

PROTECCIÓN CONTRA RIESGO DE CLIMA

Se busca asegurar protección contra Iluvias, granizo, radiación y factores ambientales que puedan afectar el cultivo

PROGRAMACIÓN DE COSECHAS

Dependiendo del momento de uso y del tipo de material, se pueden adelantar o atrasar las cosechas por modificación de luz y temperaturas.

MODIFICAR RELACIONES HÍDRICAS

Un huerto con coberturas favorece la disminución de ETo, por mantención de humedad relativa y protección contra el viento, disminuyendo requerimientos hídricos

MEJORAR CALIDAD DEL PRODUCTO ... ¿FIRMEZA?

Las coberturas tendrían un efecto sobre la calidad de la fruta, y podrían incidir en la firmeza.

TIPOS DE COBERTURAS

RAFIA

Hecha de Polietileno de Alta densidad y/o Polipropileno, de composición gruesa, utilizada principalmente para proteger del ambiente

FILMS PLÁSTICOS

Puede estar hecho de distintos plásticos, con diferentes propiedades de filtro de radiación, luz solar y modificación de temperatura.

MALLAS

De diversas características de filamento, tejido y color para intercepción y filtro de luz.

Protección contra riesgos climáticos en uva de mesa > 1500 ha en Chile

Disminución de demanda hídrica y protección a heladas en palta var. Hass

Y en arándanos...mallas para zonas con exceso de radiación.

- 1. La sombra baja la temperatura foliar
- 2. La sombra cambia el ángulo foliar
- 3. Tasa de fotosíntesis se reduce < 50 %PAR
- 4. Claros y rápidos cambios en Clorofila
- 5. Densidad de estomas se reduce < 50 %PAR

- 1. Mayor rendimiento, excepto mallas negras 50%
- 2. Mallas no alteraron sólidos solubles ni peso del fruto
- 3. Mayor rendimiento sería por menor caída de frutos después de cuaja
- 4. Mallas no alterarían retorno floral

Fuente: Jorge Retamales

Modificación fecha de cosecha

Berries Paradise, Guadalajara 2018

Proyecto: "Tecnologías de protección en huertos de arándanos para mitigar los riesgos climáticos y su impacto en el rendimiento y calidad en postcosecha de fruta destinada al mercado de exportación como fresco"

CORFO

¿ CÓMO PUEDEN AFECTAR LA CALIDAD DE ARANDANOS?

 $F = G \times A$

F = Fenotipo

G= Genética

A= Ambiente

¿ CÓMO PUEDEN AFECTAR LA POSTCOSECHA?

BUEN PRODUCTO A COSECHA

BUEN MANEJO DE POSTCOSECHA

POSTCOSECHA DEFICIENTE

MANTIENE CALIDAD

DISMINUYE CALIDAD

¿ CÓMO PUEDEN AFECTAR LA POSTCOSECHA?

MAL PRODUCTO A COSECHA

BUEN MANEJO DE POSTCOSECHA

POSTCOSECHA DEFICIENTE

EJEMPLO: PUDRICIÓN <u>A COSECHA</u> UVA DE MESA

SIN PUDRICIÓN

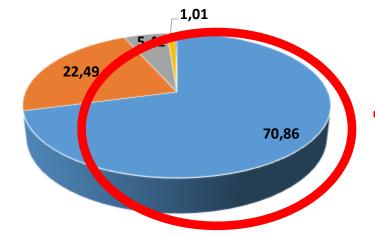
PUDRICIÓN (1 A 5 BAYAS)

PUDRICIÓN (6 A 10 BAYAS)

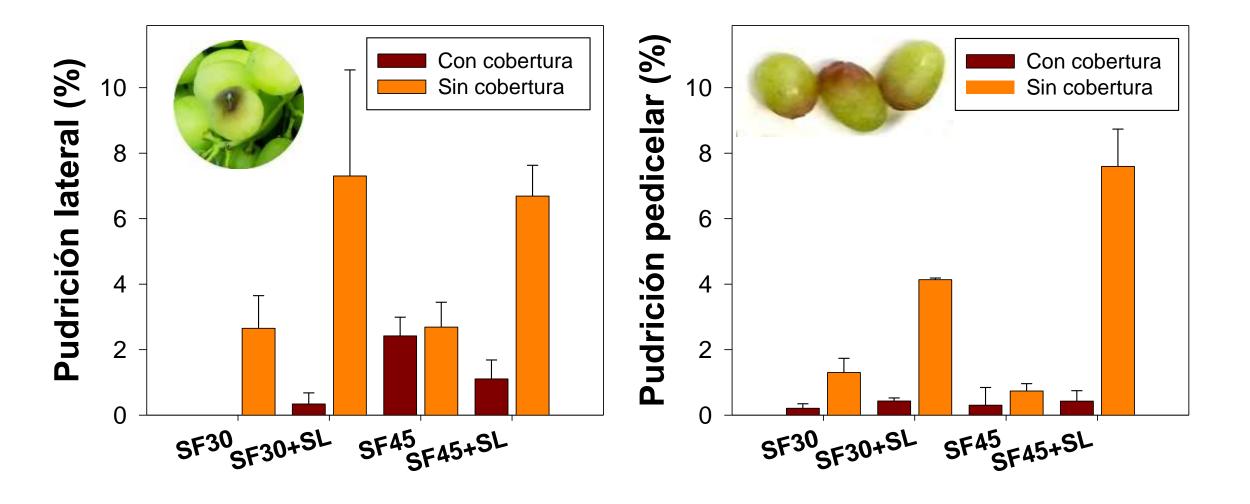
PUDRICIÓN (11 A 15 BAYAS)

PUDRICIÓN (>15 BAYAS)

24,26


34,40

24,3% de fruta sana


12,25

22,13

70,9 de fruta sana

PUDRICIÓN POST ALMACENAMIENTO

QUE TECNOLOGÍAS DE POSTCOSECHA SE UTILIZAN EN ARÁNDANO?

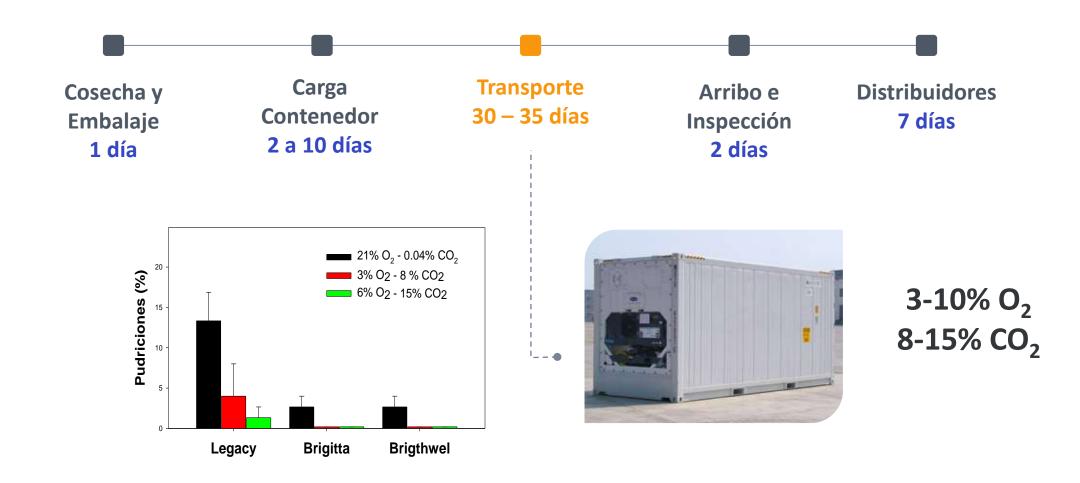
TECNOLOGÍAS DE POSTCOSECHA EN ARÁNDANOS

Almacenamiento en frío

Disminución de Metabolismo. Variación de Humedad Relativa

Tecnologías complementarias

- Atmósfera Modificada
- Atmósfera Controlada



Tecnologías de apoyo

- Gasificación SO₂ a cosecha
- Liberación de SO₂ en postcosecha (Generador o Bolsas)
- Oxígeno Reactivo / Ozono
- Ceras o Recubrimientos
- Varios......

ATMÓSFERA CONTROLADA

ATMÓSFERA MODIFICADA

Cosecha y Embalaje 1 día Carga
Contenedor
2 a 10 días

Transporte 30 – 35 días

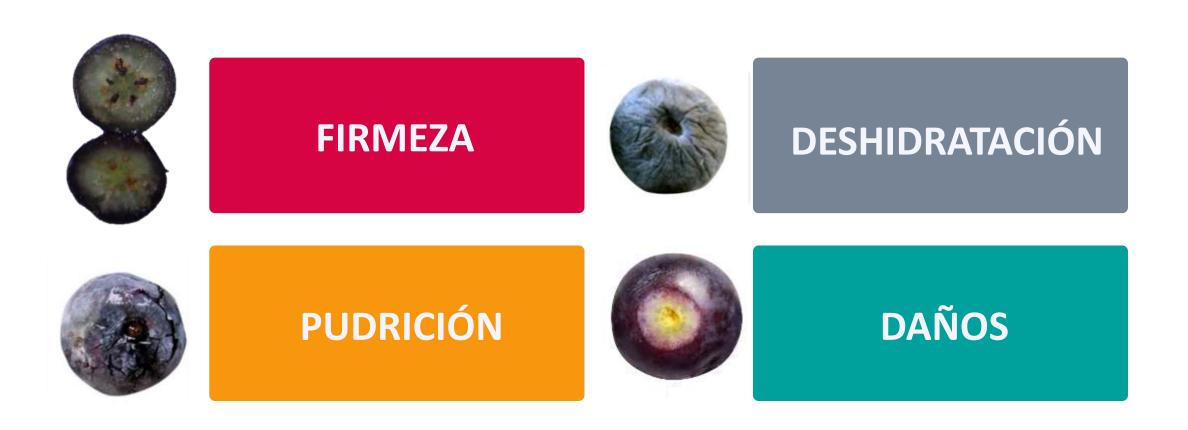
Arribo e Inspección 2 días Distribuidores 7 días

Concentración de gases según proveedor

Disminución de respiración

Efecto sobre Firmeza y Pérdida de Peso

Efecto Combinado con otras Tecnologías

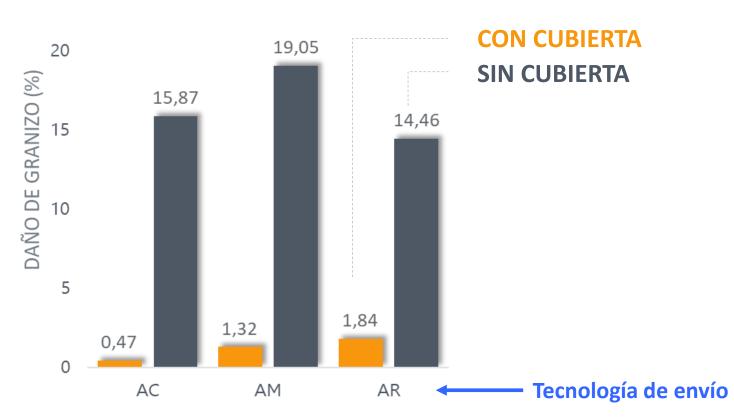


Y existe una serie de alternativas en función de mercado de destino, transporte, tipo de productor, logística de frío, etc.....

Variable	Tecnología de Postcosecha					
	Aire regular	Bolsa alta humedad	Atmosfera modificada	Atmosfera controlada	Gasificación SO ₂	Generador SO ₂ + AM
Perdida de peso (deshidratación visual)	x	11	//	✓	х	11
Firmeza	x	11	11	✓ XX (CO ₂ > 15%)	X XX (SO ₂ >400ppm-h)	✓
Hongos y pudriciones	X	xx	X ✓ (CO ₂ >8%)	11	11	111
Costo monetario tecnología	///	111	11	1	✓ ✓ Alta inversión	✓
Recomendación	•	Bolsa traslapada	Buen manejo del frío	CO ₂ = 10% O ₂ = 5-10%	200 ppm-h	Excelente manejo del frío

PRINCIPALES ATRIBUTOS AFECTADOS DURANTE POSCOSECHA

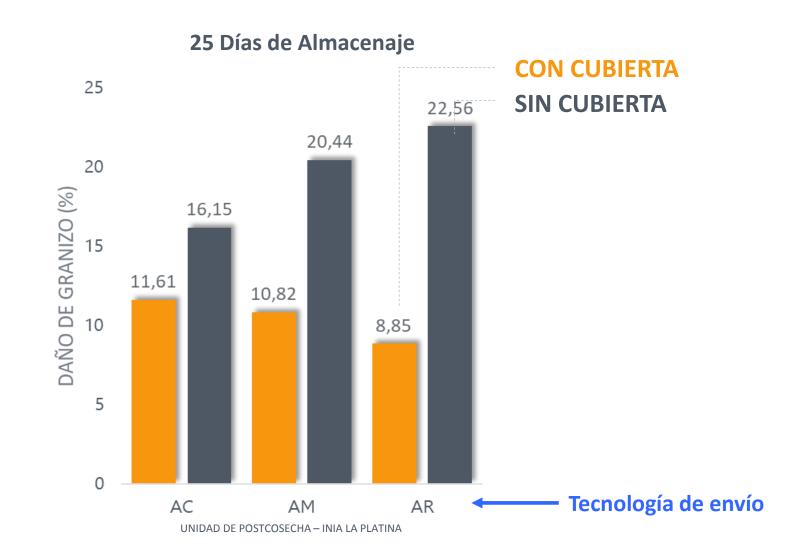
25


PROTECCIÓN CLIMÁTICA: DAÑO POR GRANIZO EMERALD

EVENTO DE GRANIZO AL

7 DE NOVIEMBRE 2017 (LONGAVÍ)

25 Días de Almacenaje



PROTECCIÓN CLIMÁTICA: DAÑO POR GRANIZO STAR

EVENTO DE GRANIZO AL

7 DE NOVIEMBRE 2017 (LONGAVÍ)

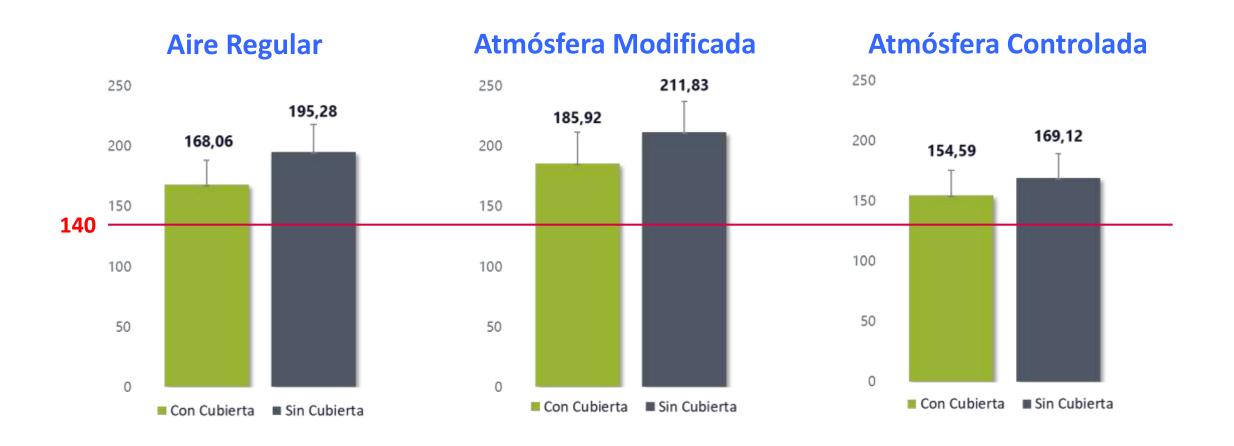
INCIDENCIA DE DAÑO POR GRANIZO

STAR CON CUBIERTA

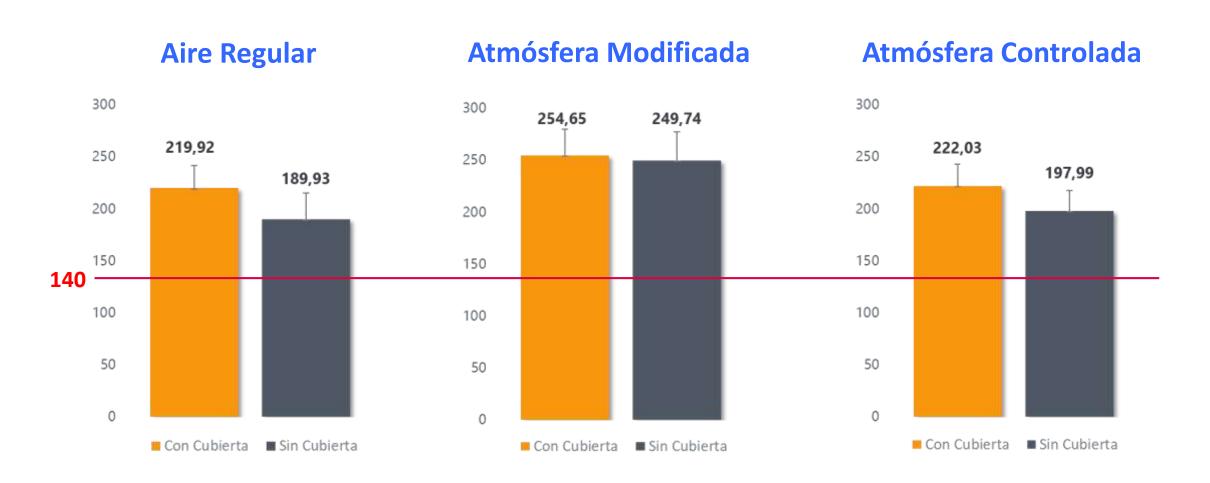
INCIDENCIA DE DAÑO POR GRANIZO

STAR SIN CUBIERTA

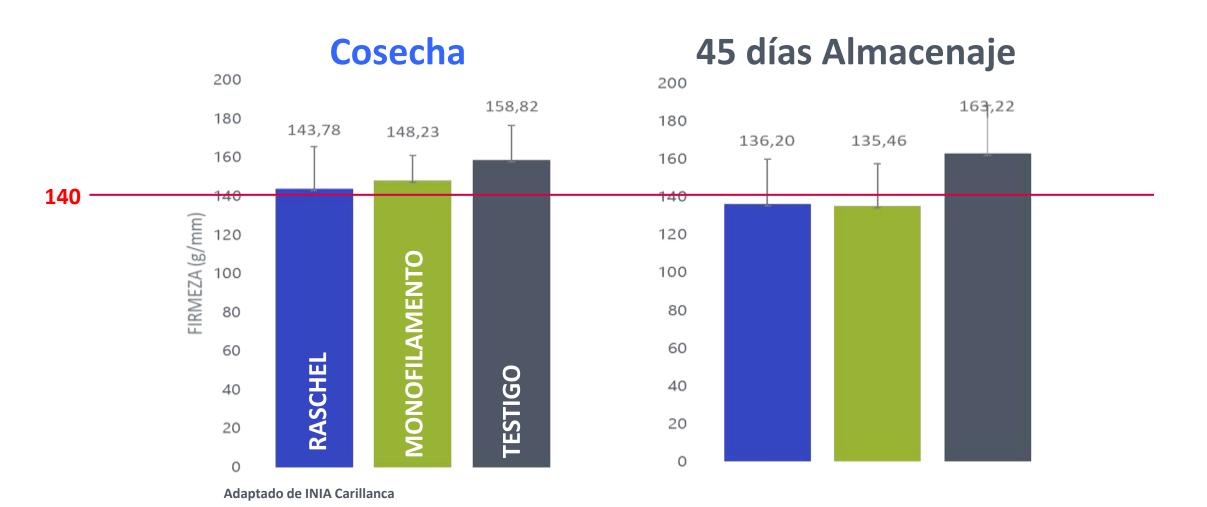
Firmeza o Textura


- ✓ Tipo de cobertura: Malla, plástico, rafia
- ✓ Distintas localidades y variedades
- ✓ Almacenamiento:

Aire Regular (AR) Atmósfera controlada (AC) Atmósfera modificada (AM)



FIRMEZA DE EMERALD 25 DÍAS CON Y SIN CUBIERTA

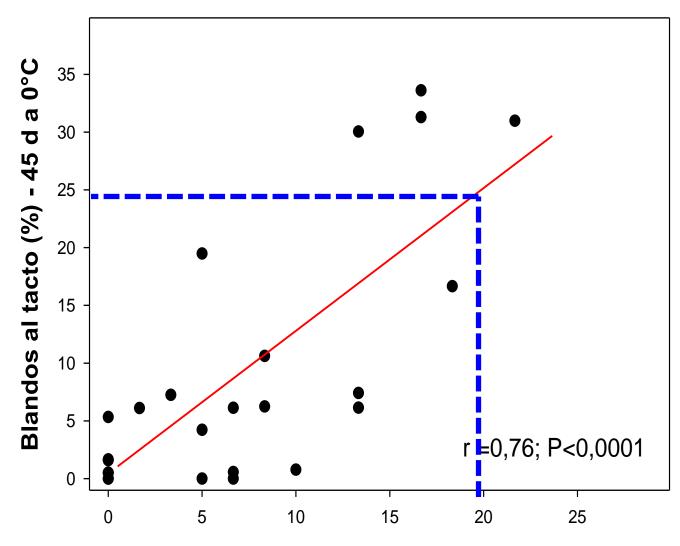


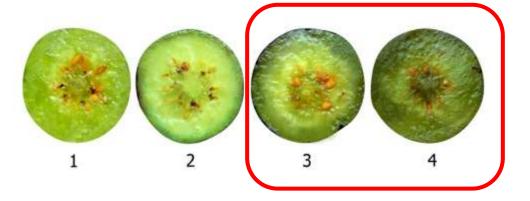
FIRMEZA DE STAR 30 DÍAS CON Y SIN CUBIERTA

FIRMEZA DE OCHLOCKONEE CON Y SIN CUBIERTA

A QUE SE DEBERÍAN DIFERENCIAS EN PÉRDIDA DE FIRMEZA?

- ✓ COMPONENTE "G x A"
- Variedad
- Clima
- Manejos
- Riego
- Madurez a cosecha
- ✓ DESHIDRATACIÓN
- ✓ DAÑOS MECÁNICOS (MACHUCONES, PRESIÓN)



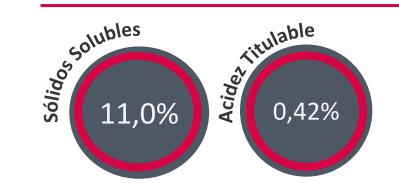


ESTADO DE PULPA A COSECHA VS FRUTA BLANDA POSTCOSECHA

ESCALA PULPA



Frutos con nota de pulpa 3 y 4 (%) - A cosecha

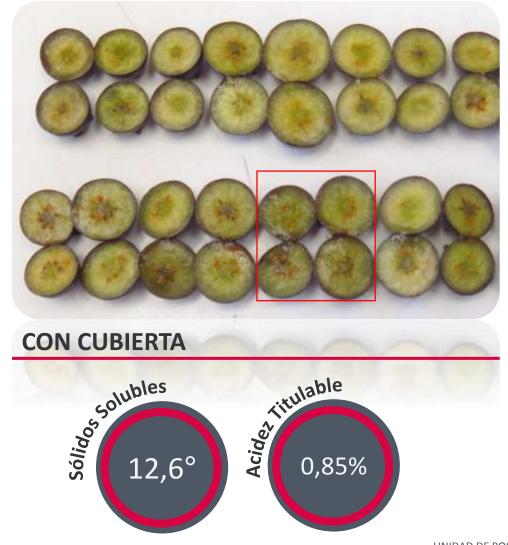


EMERALD LLEGADA CON Y SIN CUBIERTA

CON CUBIERTA

SIN CUBIERTA

EMERALD 25 DÍAS A 0°C CON Y SIN CUBIERTA



STAR COSECHA CON Y SIN CUBIERTA

STAR 30 DÍAS CON Y SIN CUBIERTA

Estado de madurez a cosecha es factor clave en definir firmeza, y debe ser considerado al tener manejos que afecten avance del desarrollo de arándanos en precosecha

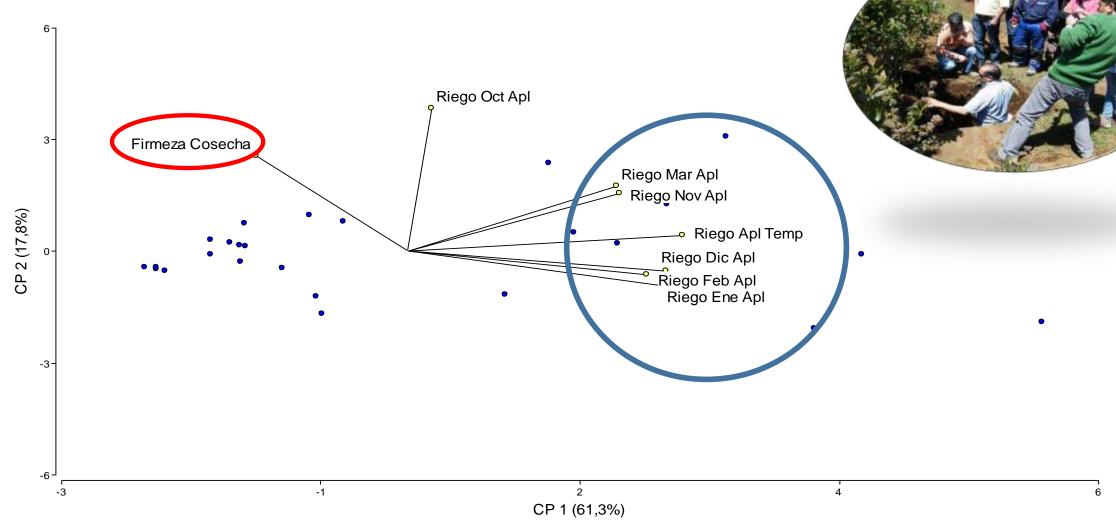
Qué otro factor puede afectar este resultado?

- ✓ Cambios de temperatura bajo cubierta: zona, tipo de ventilación, etc.
- ✓ Cambios en demanda de nutrientes
- √ Cambios en demanda hídrica
- ✓ Gestión de cosecha

Estados de madurez

Traslado de campo a acopio

Traslado a packing


Temperaturas

Demanda hídrica vs firmeza

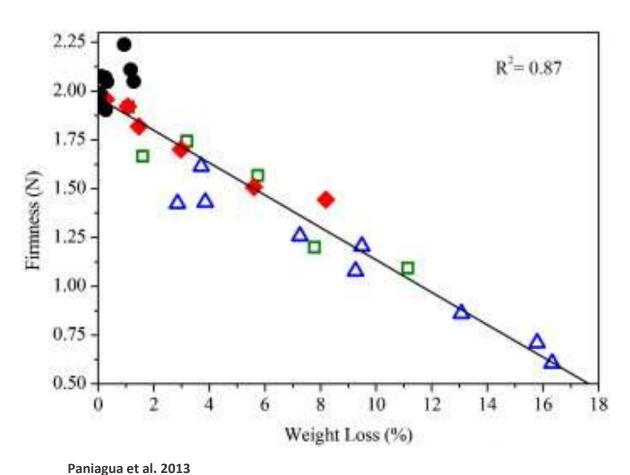
Nivel de Riego	Firmeza (g/mm)				
	2008	2009	2010	Promedio	
Sin Riego	187	177	175	179	
Moderado	182	176	175	178	
Sobre-riego	176*	176	171	174*	

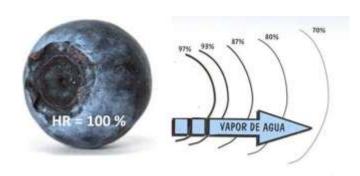
Ehret y colabs. observaron que la aplicación de <u>niveles excesivos</u> de riego afectaron negativamente la firmeza de arándano "Duke"

Algo ya observado en experiencias anteriores

Ante excesos de riego....menor firmeza

Fuente: Cropcheck, INIA


Incluso siendo más importante que otros manejos....


(Ponderadores)	54,3	47	49	24,4	20,6	12,2	9,69	6,85
Firmeza 45 días	Poda	Botrytis	Riego	Nitrógeno	Fósforo	Calcio	Magnesio	Azufre
Blanda	Débil	R. Bajo	Alto	Alta	Baja	Baja	Baja	Alta
Sensible	Fuerte	R. Bajo	Alto	Alta	Baja	Baja	Baja	Baja
Firme	Sugerida	R. Alto	Propuesto	Propuesta	Propuesta	Propuesta	Propuesta	Propuesta

Fuente: Cropcheck, INIA

EFECTO DE LA DESHIDRATACIÓN DE LA FRUTA EN **FIRMEZA**

HUMEDAD RELATIVA

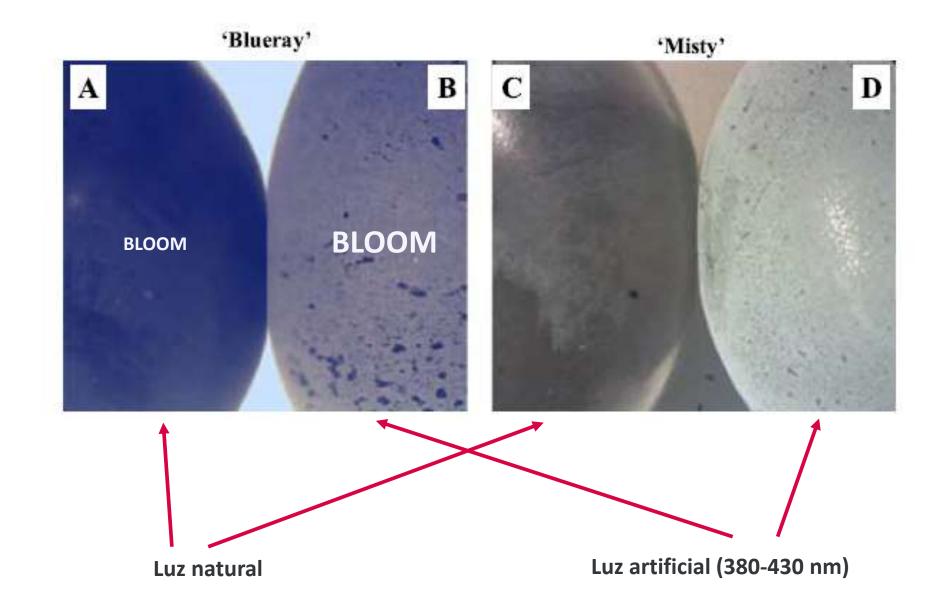
FIRMEZA

Fuente: Luis Luchsinger

Y esta <u>pérdida de peso</u> ocurre en todas las etapas

Tabla N°10: Pérdida de peso en arándano cv. Ventura trasportado en jaba

Etapa	Retención (Hrs)	Temperatura ambiente (°C)	Temperatura pulpa (°C)	Pérdida de peso (%)	Pérdida de peso acumulada (%)	
Cosecha	2.0	19.8	18.9	0.20	0.20	
Transporte	0.5	20	19.2	0.08	0.28	
Recepción	0.5	20.1	19.4 0.06		0.34	
Gasificación	0.5	20.9	19.7	0.15	0.49	
Post-gasificación	2.0	19.5	19.9		0.80	
Empaque	2.0	17.7	19	0.12	0.92	
Paletizado	1.0	16.8	17.6	0.08	1.00	
Cámara Maquila	43.0	0.2	0.5	0.77	1.77	
Total	51.5			1.8		


Revisar gestión de cosecha:

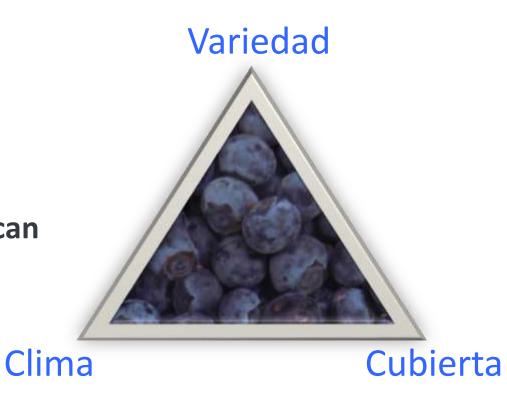
- Tiempo en el campo
- Acopio
- Traslado a packing
- Prefrío

0,5 a >4% previo a envío!!!!

Fuente: Danper, Perú

Por un aumento en 10°C de temperatura la pérdida de peso se puede llegar a triplicar.....

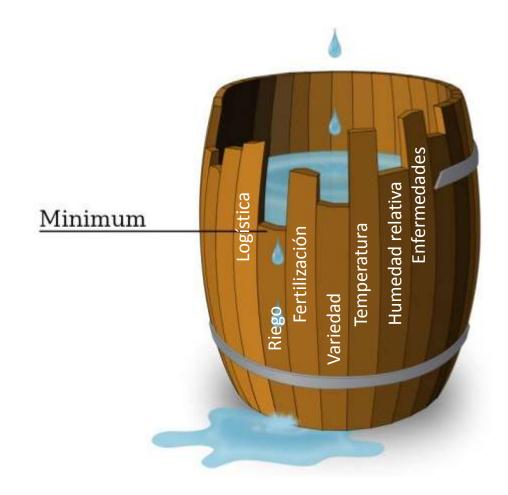
Consideraciones finales:



Tener claro el objetivo de usar COBERTURA

Y que se manejen acorde a los efectos que provocan

¿ SOBREMADUREZ ? CUÁNDO COSECHO CADA SECTOR ¿PROTECCIÓN CONTRA RIESGO DE CLIMA?



Y EN POSTCOSECHA.....IDENTIFICAR EL PROBLEMA

Ley del Mínimo de Liebig

¿Cuál es la limitante? ¿Dónde está el problema?

CADENA DE UN BUEN PRODUCTO

MANEJOS DE PRECOSECHA

Se debe considerar los manejos apropiados para la variedad, como poda, nutrición, reguladores de crecimiento, plagas, enfermedades etc. y trabajar limitantes

VARIEDAD

Se debe establecer manejos considerando los distintos comportamientos varietales y no como especie en general

POSTCOSECHA

Luego de cosechado se deben aplicar tecnologías y manejos adecuados para cada producto y según su capacidad de almacenaje y viaje.

Se debe considerar la adaptación al clima local según las necesidades de la variedad, así como eventos de lluvias o granizos en temporada.

COSECHA ÓPTIMA

Programar cosechas con frecuencias según estado de madurez y con cuidado de evitar daños a la fruta en el proceso. ¡Inicio de Cadena de Frío!

EQUIPO POSTCOSECHA ARANDANO INIA

Bruno Defilippi Ing. Agrónomo, Ph.D. Director U. de Postcosecha

Abel González Ing. Agrónomo, Ph.D. SubDirector TEMUCO

Edgard Álvarez Ing. Agrónomo Investigador SANTIAGO

🗂 Laboratorio Calidad

Gabriel Neumann Ing. Agrónomo Temuco

Pedro Contreras Técnico Agrícola Zona Centro

Pablo González Ing. Agrícola Coordinador de Evaluaciones

Daniela Olivares Ing. Biotec. M, Dra. Coordinadora de Proyectos Analític

Evaluaciones y Terreno

Manuel Garay Camila Leyton
Técnico Agrícola Ing. Agrónomo
Ayudante de
Investigación Investigación

Sebastián Vargas Técnico Agrícola Ayudante de Investigación

Rosa Molina Técnico Químico Ayudante de Investigación

PROGRAMA TECNOLÓGICO PARA LA FRUTICULTURA DE EXPORTACIÓN ZONA CENTRO-SUR

Proyecto PTEC-Corfo 2017-2023

GRACIAS!

